Learning Goal Oriented Bayesian Networks for Telecommunications Risk Management
نویسندگان
چکیده
This paper discusses issues related to Bayesian network model learning for unbalanced binary classification tasks. In general, the primary focus of current research on Bayesian network learning systems (e.g., K2 and its variants) is on the creation of the Bayesian network structure that fits the database best. It turns out that when applied with a specific purpose in mind, such as classification, the performance of these network models may be very poor. We demonstrate that Bayesian network models should be created to meet the specific goal or purpose intended for the model. We first present a goal-oriented algorithm for constructing Bayesian networks for predicting uncollectibles in telecommunications riskmanagement datasets. Second, we argue and demonstrate that current Bayesian network learning methods may fail to perform satisfactorily in real life applications since they do not learn models tailored to a specific goal or purpose. Third, we discuss the performance of “goal oriented” K2 and its variant.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کامل